Preparation and Properties of Fe-Substituted V₆O₁₃

M. GREENBLATT,* D. W. MURPHY, F. J. DISALVO, M. EIBSCHUTZ, S. M. ZAHURAK, AND J. V. WASZCZAK

Bell Laboratories, Murray Hill, New Jersey 07974

Received October 23, 1981; in final form January 8, 1982

Iron-substituted $V_{6}O_{13}$ with the maximum iron composition of $Fe_{0.5}V_{5.5}O_{13}$ was prepared. Singlecrystal electrical resistivity, Mössbauer spectra, and magnetic susceptibility are reported.

Introduction

Recent interest in lithium insertion compounds of V_6O_{13} (1-3) and in the metalinsulator transition in V_6O_{13} (4-5) has led us to study iron-substituted compositions $Fe_x V_{6-x} O_{13}$. The existence of $FeV_3 O_8(6)$, which has the monoclinic $VO_2(B)$, structure, and the close structural relationship between V_6O_{13} and $VO_2(B)$ (7, 8) suggested that substantial iron substitution in V_6O_{13} might be possible. The lithium insertion product Li₂FeV₃O₈ (9) exhibited improved crystallinity over the unsubstituted $Li_x VO_2(B)$, allowing a detailed refinement of the Li₂FeV₃O₈ structure by neutron diffraction powder profile analysis (NDPPA) (10). The fully lithiated $Li_8V_6O_{13}$ is poorly crystalline, hence it was not possible to carry out NDPPA. It was hoped that a similar improvement in the crystallinity of the fully lithiated Fe-substituted V₆O₁₃ might be achieved to allow the NDPPA.

The unsubstituted V_6O_{13} is a "borderline" metal at room temperature and undergoes a metal-to-insulator transition at $147^{\circ}K$

0022-4596/82/050212-05\$02.00/0 Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved. (4). The magnetic signature of this transition is eliminated by insertion of as little as 0.03 Li/V. Thus, the influence of Fe substitution on electron localization in V₆O₁₃ is also of interest.

Experimental

Polycrystalline samples with the composition Fe_{0.5}V_{5.5}O₁₃ were prepared by heating stoichiometric mixtures of Fe₂O₃, V_2O_5 , and V in evacuated quartz ampoules at 500°C overnight, then increasing the temperature to 650°C for 1 to 2 days. Similar methods were used to prepare $Fe_xV_{6-x}O_{13}$ $(0.12 < x \le 0.5)$ from stoichiometric mixtures of Fe_{0.5}V_{5.5}O₁₃ and V₆O₁₃. Single crystals of Fe_{0.5}V_{5.5}O₁₃ and Fe_{0.17}V_{5.83}O₁₃ were grown by vapor transport in evacuated quartz tubes with TeCl₄ as the transport agent. $T_1 = 600^{\circ}$ C at the charge zone and $T_2 = 550^{\circ}$ C at the growth zone were used. After 1 week of transport, very thin black platelet crystals ($\sim 0.5 \times 0.2 \times 0.01$ cm) were obtained in each case. The X-ray diffraction pattern of pulverized crystals showed a single phase similar to V_6O_{13} with slightly shifted d values. X-Ray milliprobe analysis of the crystals indicated that they

^{*} Work performed while on sabbatical leave from the Chemistry Department, Rutgers University, New Brunswick, N.J. 08903.

had a uniform composition of $Fe_{0.5}V_{5.5}O_{13}$ and $Fe_{0.17}V_{5.83}O_{13}$, respectively. We have confirmed the X-ray milliprobe results by quantitative chemical analysis (11) of the vanadium and iron contents of pulverized crystal samples.

Powder X-ray diffraction patterns of all phases were obtained on a G.E. diffractometer with $CuK\alpha$ radiation. Magnetic susceptibility data were obtained by the Faraday method on powder samples sealed in quartz tubes. Four-probe dc conductivity measurements were made on single crystals of $Fe_{0.5}V_{5.5}O_{13}$ and $Fe_{0.17}V_{5.83}O_{13}$ which were oriented by the X-ray precession method. The ⁵⁷Fe Mössbauer spectra of Fe_{0.5}V_{5.5}O₁₃ were obtained in a standard transmission geometry with a conventional constant acceleration spectrometer using a ⁵⁷Co in Pd source. Powder absorbers for Mössbauer effect measurements were made in dry helium atmospheres by mixing the material with boron nitride.

Results and Discussion

The V₆O₁₃ structure may be visualized as arising from a (3,2) shear of the cubic ReO₃ type (7, 8). Similarly, V_2O_5 and $VO_2(B)$ may be viewed as $(2,\infty)$ and (2,2) shear structures of the same family. The $VO_2(B)$ structure consists of edge-shared, double zig-zag chains joined by corner-sharing oxygens (Fig. 1). The idealized V₂O₅ structure consists of corner-shared single zig-zag chains. Finally, V₆O₁₃ has alternating single and double chains and may be thought of as an interleaving of the two structures, " $V_2O_5 \cdot 4VO_2(B)$." Thus, since the double chain portion of V₆O₁₃ is so similar to $VO_2(B)$ we expected " $V_2O_5 \cdot FeV_3O_8$ " or FeV₅O₁₃ to be a reasonable stoichiometry for Fe substitution in V₆O₁₃. However, at this stoichiometry we were unable to preDERIVATION OF SOME ReO3 SHEAR STRUCTURES

FIG. 1. The idealized V_2O_5 lattice is derived by a shear of the ReO₃ lattice along the planes indicated by arrows. The VO₂(B) and V₆O₁₃ lattices are derived by a shear of the V₂O₅ lattice as indicated.

pare single-phase products; additional lines always appeared along with a V_6O_{13} -like X-ray pattern with slightly shifted lattice parameters. Subsequently, vapor transport with TeCl₄ of the impure "FeV₅O₁₃" yielded crystals of composition as high as Fe_{0.5}V_{5.5}O₁₃ as determined by chemical analysis. Homogeneous polycrystalline powder samples were then prepared with this maximum Fe stoichiometry.

The monoclinic unit cell parameters of $Fe_{0.5}V_{5.5}O_{13}$, a = 11.976 Å, b = 3.683 Å, c = 10.206 Å, and $\beta = 101.27^{\circ}$, were obtained by least-squares refinement of 14 strong X-ray diffraction peaks. (The cell parameters of V_6O_{13} are: a = 11.922 Å, b = 3.680 Å, c = 10.138 Å, and $\beta = 100.87^{\circ}$).

FIG. 2. Resistivity vs 1/T of Fe_{0.5}V_{5.5}O₁₃ and Fe_{0.17}V_{5.89}O₁₃.

The electrical resistivity was measured on crystals of composition Fe_{0.5}V_{5.5}O₁₃ and $Fe_{0.17}V_{5.83}O_{13}$ along the unique direction. Both compositions are semiconducting (Fig. 2). $Fe_{0.5}V_{5.5}O_{13}$ has $\rho(300 \text{ K}) \simeq$ $(5 \pm 1) \times 10^{-3} \Omega$ cm and fits a simple exponential form $\rho = \rho_0 e^{T_0/T}$ between 300-80 K with an activation energy of approximately 0.05 eV. The data for $Fe_{0.17}V_{5.83}O_{13}$, however, do not fit a simple exponential over a significant temperature interval in the temperature range of measurement. The similar magnitude of its resistivity and slope to that of Fe_{0.5}V_{5.5}O₁₃ shows that the "effective" activation energy is similar to that of Fe_{0.5}V_{5.5}O₁₃. The semiconductinglike behavior of both compounds may be due to Mott localization, with the small activation energies due to defect or impurity levels close to the band edges. An alternative explanation is that the carriers become localized due to the random Fe substitution (Anderson localization) (12) with the activation energy being given by the difference between the Fermi energy and the mobility edge.

The ⁵⁷Fe Mössbauer effect was used to study the electronic spin configuration of Fe in Fe_{0.5}V_{5.5}O₁₃. The room temperature and 4.2 K Mössbauer absorption spectra for Fe_{0.5}V_{5.5}O₁₃ are given in Figs. 3a,b.

The room temperature spectrum shows two resonance lines due to quadrupole splitting; the asymmetry in line intensity of the spectrum is due to preferred orientation of crystallites in the powder sample. The spectrum was analyzed by fitting to the sum of two Lorentzian curves of independent position, width, and depth. The quadrupole splitting is $\frac{1}{2}e^2qQ[1 + (\eta^2/3)]^{1/2} =$ 0.79 ± 0.01 mm/sec. The linewidths of the two peaks are broad, FWHM = $0.35 \pm$ 0.01 mm/sec (FWHM = full width at halfmaximum), indicating a distribution of quadrupole splittings which might be due to small variations in the site symmetry of the Fe ions and/or to the differences in the oxidation states of the nearest-neighbor vanadium ions at a given Fe site. The three

FIG. 3. Mössbauer spectrum of $Fe_{0.5}V_{5.5}O_{13}$ at room temperature and at 4.2 K. Upper scale refers to room temperature, lower scale to 4.2-K data.

crystallographically unique sites for (Fe,V) present in the Fe_{0.5}V_{5.5}O₁₃ structure are not resolved in the room temperature spectrum because of the broad distribution of quadrupole splittings at each Fe site. The isomer shift of 0.42 ± 0.01 mm/sec with respect to Fe metal indicates that iron is in the Fe³⁺ spin state.

At 4.2 K the Mössbauer spectrum shows a hyperfine splitting with rather broad FWHM ($\approx 1 \text{ mm/sec}$) and complex absorption lines, indicating a distribution of hyperfine fields. At least three hyperfine fields are evident: $H_{hf}(1) = 448 \pm 10$ kOe, $H_{\rm hf}(2) = 400 \pm 10$ kOe, and $H_{\rm hf}(3) = 350 \pm$ 10 kOe. These $H_{\rm hf}$ results suggest that the Fe ions are randomly distributed on the three crystallographically nonequivalent sites, and that the electronic environment around the iron in each of these sites is slightly different. The similar isomer shifts $IS = 0.64 \pm 0.05$ mm/sec with respect to Fe metal for each Fe site indicate that all of the Fe³⁺ is in the high spin state (in agreement with the susceptibility results below).

Since the electrical measurements indicate that the electrons are localized, oxidation states may be assigned to each transition metal: $Fe_{0.5}^{3}V_{2.5}^{5}V_3^{4+}O_{13}$.

Results of the magnetic susceptibility measurement of $Fe_{0.5}V_{5.5}O_{13}$ powder sample

FIG. 4. Magnetic susceptibility vs T of $\text{Fe}_{0.5}\text{V}_{5.5}\text{O}_{13}$ and $\text{Fe}_{0.17}\text{V}_{5.83}\text{O}_{13}$.

between 300-4.2 K are shown in Fig. 4. No magnetic signature of the metal-insulator transition characteristic of V_6O_{13} ($\simeq 147$ K) or VO₂ (\sim 342 K) is observed in the Fesubstituted V_6O_{13} . The susceptibility does not fit the Curie-Weiss law over a broad temperature range, but in the region 100-360 K a reasonable fit is obtained with $\theta \sim 80 \pm 30$ K and $C_{\rm M} \sim 3.05$ emu-K/ mole. The observed value of $\chi_{a}(300 \text{ K}) =$ 15.6×10^{-6} emu/g is about twice the magnitude of the susceptibility of V₆O₁₃ $(\chi_g(300 \text{ K}) = 7.4 \times 10^{-6} \text{ emu/g})$, indicating that Fe is in the high spin state. For highspin Fe³⁺ we expect the contribution for the Curie constant per mole of Fe to be $C_{\rm M} = \mu_{\rm eff}^2 / 8 = (\frac{1}{8})g^2 S(S + 1) = 4.4$; the V^{4+} ions in Fe_{0.5} $V_{5.5}O_{13}$ with $S = \frac{1}{2}$ each contribute $C_{\rm M} = 0.375$, assuming g = 2 in both cases. The observed $C_{\rm M} \sim 3.05$ accounts fairly well for what is expected on the basis of localized spins in the compound $(i.e., \frac{1}{2} \times 4.4 + 3 \times 0.375)$. Below 10 K the susceptibility appears to saturate, suggesting some antiferromagnetic "order" at low temperatures, perhaps of the spin glass type (13). This suggestion is further supported by the low-temperature Mössbauer measurements which indicate the presence of large hyperfine fields at 4.2 K.

No change in the magnetic susceptibility of Fe_{0.17}V_{5.83}O₁₃ powder sample is observed after two firings at 650°C, suggesting that the equilibrium composition has been reached. In this sample the concentration of unreacted V₆O₁₃ is very small, as evidenced by a barely visible transition at the temperature expected for V₆O₁₃. The χ_g vs *T* curve is similar in shape (Fig. 4) to that of Fe_{0.5}V_{5.5}O₁₃; however, χ_g could not be fit to the Curie–Weiss law over the temperature range of measurement due to the small V₆O₁₃ impurity.

The magnetic susceptibility of a polycrystalline sample of nominal composition $Fe_{0.1}V_{5.9}O_{13}$ versus temperature, shown in Fig. 5, is qualitatively similar to that of

FIG. 5. Magnetic susceptibility vs T of Fe_{0.1}V_{5.9}O₁₃ and V₆O₁₃.

Fe_{0.5}V_{5.5}O₁₃ except for the transition at 147 K, indicating the presence of about 20% V₆O₁₃ second phase. The amount of this second phase does not decrease after repeated firings at 650°C. The continued presence of the V₆O₁₃ impurity suggests that Fe_xV_{6-x}O₁₃ is homogeneous only over the range $0.12 < x \le 0.5$ at 650°C.

Treatment of $Fe_{0.5}V_{5.5}O_{13}$ with a dilute solution of *n*-BuLi in hexane at room temperature results in $Li_xFe_{0.5}V_{5.5}O_{13}$ with a maximum of x = 5.5. This stoichiometry is comparable to that obtained with nonstoichiometric V_6O_{13+x} (3). However, the X-ray pattern shows broadened lines and these samples are therefore unsuitable for NDPPA.

Conclusion

Iron may be substituted for vanadium in $V_{6}O_{13}$, but only to about one-half the extent suggested by a structural analogy with $VO_2(B)$. Single crystals may be grown by vapor transport with TeCl₄. Mössbauer results suggest that iron is randomly substi-

tuted on all three crystallographic sites. These measurements, as well as magnetic susceptibility, show that Fe is present as high-spin Fe^{3+} .

The crystals are semiconducting, probably due to Mott or Anderson localization; thus, the low-temperature metal-insulator transition is no longer possible.

References

- /. K.-A. WILHELMI, K. WALTERSSON, AND L. KIHLBORG, Acta Chem. Scand. 25, 2675 (1971).
- D. W. MURPHY, P. A. CHRISTIAN, J. N. CARIDES, AND F. J. DISALVO, *in* "Fast Ion Transport in Solids" (P. Vashishta, J. N. Mundy, and G. K. Shenoy, Eds.), p. 137 North-Holland, New York, (1979).
- D. W. MURPHY, P. A. CHRISTIAN, F. J. DISALVO, AND J. N. CARIDES, J. Electrochem. Soc. 126, 497 (1979); D. W. MURPHY, P. A. CHRISTIAN, F. J. DISALVO, J. N. CARIDES, AND J. V. WASZCZAK, J. Electrochem. Soc. 128, 2053 (1981).
- S. KACHI, K. KOSUGE, AND H. OKINAKA, J. Solid State Chem. 6, 258 (1973).
- A. C. GOSSARD, F. J. DISALVA, L. C. ERICH, J. P. REMEIKA, AND H. YASUOKA, *Phys. Rev. B*. 10, 4178 (1974).
- J. MULLER, J. C. JOUBERT, AND M. MAREZIO, J. Solid State Chem. 27, 191 (1979).
- K. KAWASHIMA, K. KOSUGE, AND S. KACHI, Chem. Lett., 1131 (1975).
- 8. S. ANDERSON, Bull. Soc. Chim. Fr., 1088 (1965).
- 9. D. W. MURPHY, M. GREENBLATT, R. J. CAVA, AND S. M. ZAHURAK, Solid State Ionics 5, 3 (1981).
- R. J. CAVA, D. W. MURPHY, A. J. SANTORO, R. S. ROTH, AND S. M. ZAHURAK, Solid State Ionics 5, 323 (1981).
- C. L. WILSON AND D. W. WILSON, Eds., "Comprehensive Analytical Chemistry," pp. 547-646, Elsevier, Amsterdam (1962).
- 12. N. F. MOTT, M. PEPPER, S. POLLITT, R. H. WALLIS, AND C. J. ADKINS, Proc. Roy. Soc. London Ser. A 345, 169 (1975).
- J. J. HAUSER AND J. V. WASZCZAK, Phys. Rev. B 18, 6206 (1978).